Plan du cours
Edit
-
- Concepts et configuration de base de la commutation
- Évolution des Réseaux Locaux Virtuels (VLAN)
- Protocole VTP
- Protocole STP
- Agrégation de liaisons et redondance au premier saut
- Concepts et configuration de base d’un réseau sans fil
- Le protocole de routage EIGRP
- IPv4
- IPv6
- Le protocole de routage OSPF
- OSPF à zone unique (IPv4 et IPv6)
Conception d'un réseau local
Edit
Implémentation d'une conception réseau
Edit
Implémentation d'une architecture réseau
Edit
La répartition de la conception en couches permet
- mettre en œuvre des fonctions spécifiques sur chaque couche, ce qui
- simplifie l'élaboration du réseau et, par voie de conséquence,
- simplifie son déploiement et sa gestion.
Modèle de conception hiérarchique :
- Couche d'accès
- Couche de distribution
- Couche cœur
Modèle de conception hiérarchique : couche d'accès
Edit
- Sécurité des ports
- Fonctionnalité des VLAN
- Transmission FastEthernet / GigabitEthernet
- PoE (Power over Ethernet)
- Agrégation de liaisons
- Qualité de service
Modèle de conception hiérarchique : couche de distribution
Edit
- Prise en charge de la couche 3
- Débit de transfert élevé
- Gigabit Ethernet / 10 Gigabit Ethernet
- Composants redondants
- Stratégies de sécurité / listes de contrôle d'accès
- Agrégation de liaisons
- Qualité de service
Modèle de conception hiérarchique : couche cœur
Edit
- Prise en charge de la couche 3
- Débit de transfert extrêmement élevé
- Gigabit Ethernet / 10 Gigabit Ethernet
- Composants redondants
- Agrégation de liaisons
- Qualité de service
Architecture d'entreprise Cisco
Edit
L'architecture d'entreprise Cisco sépare le réseau en composants fonctionnels (modules), tout en préservant les couches d'accès, de distribution et cœur de réseau.
Les modules primaires :
- Campus d'entreprise
- Périphérie d'entreprise
- Périphérie de Fournisseur de service (FAI)
- À distance
Architecture d'entreprise Cisco : campus
Edit
...
Domaines défaillants
Edit
Un réseau bien conçu [...] réduit aussi les dimensions des domaines défaillants (de collisions et de diffusions).
Un domaine défaillant = la zone d'un réseau affectée lorsque des problèmes surviennent au niveau d'un périphérique ou d'un service réseau critique.
De plus petits domaines défaillant réduisent l'impact d'un échec sur la productivité de l'entreprise.
De plus petits domaines défaillant simplifient aussi le dépannage du réseau.
Évolution du réseau
Edit
Conception pour l'évolutivité
Edit
Types de commutateurs (pour les réseaux d'entreprise)
Edit
- Commutateurs LAN de campus
- Commutateurs gérés dans le nuage (cloud)
- Commutateurs pour Data centers
- Commutateurs pour fournisseurs de services
- Réseaux virtuels (Cisco Nexus)
Densité de ports
Edit
Facteur de forme (form-factor)
- Commutateurs à configuration fixe
- Commutateurs modulaires
- Commutateurs empilable
Débit de transfert
Edit
EtherChannel [Wikipédia] ― une technologie d'agrégation de liens utilisée principalement sur les commutateurs de Cisco ; elle permet d'assembler plusieurs liens physiques Ethernet en un lien logique. Le but est d'augmenter la vitesse et la tolérance aux pannes entre les commutateurs, les routeurs et les serveurs.
- EtherChannel utilise les ports de commutations existants (pas de frais supplémentaires).
- Le lien EtherChannel est considéré comme un lien logique unique.
- Configuration EtherChannel tire parti de l'équilibrage de la charge entre les liens physiques.
Power over Ethernet (PoE)
Edit
Commutation multicouche
Edit
Conditions de routeur
Edit
Rôles de routeurs :
- Interconnexion des sites
- Fournir des chemins redondants
- Interconnecter des FAI
- Traduction entre différents types et protocoles de supports
Autres avantages de routeurs :
- confinement des diffusions ;
- connexion à des emplacement distants (même réseau) ;
- regroupement logique d'utilisateurs par application ou service ;
- sécurité améliorée.
Le routage dans les grands réseaux se base sur les protocoles de routage avancés :
- OSPF et OSPF à zones multiples (convergence rapide);
- EIGRP (Cisco).
Matériel de routage
Edit
Catégories de routeurs Cisco :
- Routeurs pour filiale
- Routeurs de périphérie de réseau
- Routeurs de fournisseurs de services
Gestion des périphériques
Edit
Commandes de base de routeur en mode CLI
Edit
Commandes d'affichage de base du routeur
Edit
Commandes associées au routage :
show ip protocols
Affiche des informations sur les protocoles de routage configurés.
show ip route
Des informations sur les tables de routage, notamment les codes de routage, les réseaux connus, la distance administrative et les métriques.
show ip ospf neighbor
Commandes associées à l'interface :
show ip interfaces
show ip interface brief
show cdp neighbors
Évolution de VLANs
Edit
VTP
Edit
Le protocole VLAN (VLAN Trunking Protocol, VTP) [Wikipédia ] permet de réduire les tâches d'administration sur un réseau commuté en propageant sur les liens trunk les configurations de VLAN à travers le domaine. Propre à Cisco.
Version VTP et plage de VLAN :
- VTP version 1 ― gère seulement la plage normale (VLAN ID 1..1005) ;
- VTP version 2 ― gère seulement la plage normale, prend en charge Token Ring ;
- VTP version 3 ― gère aussi la plage étendue.
Configuration VLAN est stocké dans le fichier vlan.dat.
- Mode Serveur VTP
- Si on configure un mot de passe VTP, il doit être le même pour tout le domaine VTP !
- Tous les switch's sont en mode Serveur par défaut !
- Mode Client VTP
- Un client les informations VLAN dans la mémoire vive !
- Ne permet pas de créer, modifier ou supprimer des VLAN manuellement !
- Mode VTP Transparent
- Ne participe pas à VTP (sauf pour transférer les annonces VTP aux clients VTP)
- Les VLANs crées localement restent sur le switch en mode transparent et ne sont pas transmis.
VTP comprend 3 types d'annonces :
- Résumé (5 minutes) ― informent les commutateurs du nom de domaine et du numéro de révision de la configuration VTP.
- Requête ― envoyée en réponse à un message d'annonce type résumé avec le numéro de révision supérieur.
- Sous-ensemble ― contient les informations sur les VLANs.
Numéro de révision
Edit

Le numero de révision de la configuration VTP est un nombre de 32 bits inclus avec les annonces Résumé. et permet de déterminer si les données reçues sont plus récentes que la version locale.
Pour remettre à zéro :
- Remplacer le nom du domaine VTP par un autre nom (inexistant, par exemple) puis réattribuer le nom initial, ou...
- Basculer le commutateur en mode transparent puis revenir au mode VTP précédent.
Plages VLAN
Edit
VLAN à plage normale (1..1005)
- ID 1002..1005 sont réservés aux VLAN Token Ring et FDDI, il sont automatiquement créés et ne peuvent pas être supprimés.
- Les configuration sont stockées dans vlan.dat dans la mémoire Flash (non-volatile).
- Sont pris en charge par VTP versions 1 et 2.
VLAN à plage étendue (1006..4094)
- Les configurations ne sont pas écrites dans vlan.dat !
- Les configurations sont par défaut stockées dans le fichier de configuration en cours.
- Le protocole VTP versions 1 et 2 ne prennent en charge
VTP pruning
Edit
Permet d'empêcher les diffusions de se propager vers des switch's qui n'ont pas de ports Access dans le VLAN concerné par la diffusion.
On configure (active/désactive) pruning au niveau du serveur VTP.
Configuration VTP
Edit
Étape 1 : Configuration su serveur VTP
Edit
S1(config)# vtp mode server
Étape 2 : Configuration du nom de domaine et du mot de passe VTP
Edit
S1(config)# vtp domain <nom du domaine VTP> S1(config)# vtp password <mot de passe VTP>
Remarque ! Un switch avec le nom de domaine par défaut (NULL) acceptera le premier nom du domaine envoyé par un serveur VTP ! (à vérifier si le client doit posséder déjà le mot de passe pour le domaine).
Étape 3 : Configuration des clients VTP
Edit
S2(config)# vtp mode client S2(config)# vtp domain <nom du domaine VTP> S2(config)# vtp password <mot de passe VTP>
Étape 4 : Configuration des VLAN sur le serveur VTP
Edit
S1(config)# vlan 10 S1(config-vlan)# name SALES S1(config-vlan)# vlan 20 S1(config-vlan)# name MARKETING ...
Remarque ! Pour supprimer un vlan ― no vlan <nom du VLAN>.
Étape 5 : Affectation de ports à des VLAN
Edit
S2(config)# interface f0/10-19 S2(config-if)# switchport mode access S2(config-if)# switchport access vlan 10 ...
Remarque ! La commande switchport access vlan <ID> force la créaton du VLAN <ID> s'il n'existe pas déjà.
Vérification VTP et VLAN
Edit
Switch# show vtp status Switch# show vtp password ... Switch# show vlan brief
DTP
Edit
Le protocole DTP (Dynamic Trunking Protocol) [Wikipédia] gère la négociation du trunk si le port du commutateur voisin est configuré dans un mode trunk et prend en charge le DTP, lui aussi.
Switchport modes :
- Access : le port n'est pas en mode trunk
- Dynamic auto : (par défaut) l'interface convers la liaison en trunk ou accès si l'interface voisine est en mode trunk ou désirable.
- Dynamic desirable : l'interface tente activement de convertir la liaison en liaison trunk, si l'interface voisine est en mode trunk, desirable ou dynamique.
- No-negotiate : désactiver le protocole DTP sur le port ; le mode opérationnel (access ou trunk) doit être configuré manuellement.
Configuration DTP
Edit
...
Vérification DTP
Edit
Switch# show dtp interface f0/1 Switch# show interfaces f0/1 switchport
Exercice
Edit
- PKT 2.1.4.4 et
- Lab 2.1.4.5.
Résolution des problèmes multi-VLAN
Edit
...
Commutation de couche 3
Edit
Commutateur multicouche :
- Port routé : interface de couche 3 pure (similaire à une interface physique sur un routeur) ;
- Interface virtuelle de commutateur (SVI) : interface VLAN virtuelle pou rle routage inter-VLAN.
Commutateurs Cisco multicouches :
- Catalyst 6500 utilise Cisco Express Forwarding (CEF) [Wikipédia] pour le routage et des interfaces de couche 3 par défaut ;
- Catalyst 4500 ― CEF et des interfaces de couche 2 par défaut ;
- Catalyst 3560 ― routage statique (à vérifier) et des interfaces de couche 2 par défaut ;
- Catalyst 2960 (IOS 12.2(55) ou plus) ― routage statique et des interface de couche 2 par défaut ; pas de ports routés.
Routage inter-VLAN au moyen d'interfaces virtuelles (SVI)
Edit

Par défaut, une interface SVI est créée pour le VLAN par défaut (VLAN 1). Des interfaces SVI supplémentaires doivent être explicitement créées : elles sont créées la première fois que le mode de configuration d'interface VLAN est saisi (exemple : interface vlan 10).
Les raisons de configurer SVI :
- Fournir une passerelle pour un VLAN ;
- Assurer la connectivité IP de couche 3 au commutateur ;
- Prendre en charge le protocole de routage et les configurations de pontage
Les avantages des interfaces SVI :
- Plus rapide que le modèle Router-on-a-stick ;
- Pas nécessaire d'utiliser des liaisons externes entre le commutateur et le routeur pour le routage ;
- Ne se limite pas à une seule liaison physique : des liaisons EtherChannels de couche 2 utilisées.
Configuration d'interface SVI
Edit
Switch(config)# vlan 10 Switch(config-vlan)# name SALES Switch(config)# interface vlan 10 Switch(config-if)# ip address 192.168.10.1 255.255.255.0 ... Switch(config)# ip routing ...
Routage inter-VLAN au moyen de ports routés
Edit
Un port routé est un port physique qui fait office d'interface sur un routeur :
- un port routé n'est pas associé à un VLAN spécifique ;
- un port routé se comporte comme une interface de routeur normale ;
- les protocoles de couche 2 (STP, etc.) ne fonctionnent pas sur une interface routée ;
- certaines protocoles (LACP et EtherChannel par exemple) fonctionnent au niveau de la couche 3.
Remarque ! Contrairement aux routeurs Cisco, les ports routés sur un commutateur Cisco ne prennent pas en charge les sous-interfaces.
Configuration d'un port routé
Edit
Switch(config)# interface g0/1 Switch(config-if)# no switchport ... Switch(config)# ip routing
Problèmes de configuration de routage inter-VLAN sur des commutateurs de la couche 3
Edit
- VLAN
- les VLAN doivent être définis sur tous les commutateurs ;
- les VLAN doivent être activés sur les ports trunk ;
- les ports doivent se trouver dans les VLAN appropriés.
- SVI
- les SVI doivent disposer de l'adresse IP et du masque de sous-réseau correct ;
- chaque interface SVI doit correspondre au numéro du VLAN ;
- les SVI doivent être opérationnelles.
- Routage
- le routage doit être activé ;
- chaque interface ou réseau doit être ajouté au protocole de routage (ou des routes statiques doivent être saisies).
- Hôtes
- les hôtes doivent avoir l'adresse IP et le masque de sous-réseau correct ;
- les hôtes doivent avoir une passerelle par défaut (associée à une interface SVI ou un port routé).
Redondance LAN, protocole STP
Edit
Introduction : problèmes de redondance LAN
Edit
Conséquences de la redondance au niveau de couche 2
- Instabilité des tables MAC
- Les tempêtes de diffusion
- Plusieurs copies de la même trame
Concepts du protocole STP
Edit
Spanning Tree Protocol (STP) [Wikipédia] = ...
STP garantit l'unicité du chemin logique entre toutes les destinations sur le réseau en bloquant (pas shutdown !) les ports redondants.
Un port bloqué ― des données d'utilisateur ne sont pas autorisées à circuler par le port ; ceci n'inclut pas les trames BDPU.
Bridge Protocole Data Unit (BPDU) [Wikipédia] = ...
La sélection se fait par le plus petit :
- Root ID : Priority > address MAC
- Bridge ID : Priority > address MAC
Port racine ― le port de commutation le plus proches du pont racine (root bridge).
Ports désignés (forward port) ― tous les ports qui sont autorisés à acheminer le trafic. Tous les ports du pont racine (root bridge) sont désignés.
États des ports
Edit
Opérations autorisées | État du port | ||||
---|---|---|---|---|---|
Blockage | Écoute | Apprentissage | Transfert | Désactivé | |
Recevoir et traiter des trames BPDU | + | + | + | + | ― |
Réacheminer des trames de données | ― | ― | ― | + | ― |
Réacheminer des trames de données commutées provenant d'une autre interface | ― | ― | ― | + | ― |
Apprendre des adresse MAC | ― | ― | + | + | ― |
Configuration de STP sur un port
Edit
S1(config)# spanning-tree mode ...
Pour les ports d'accès
S1(config-if)# spanning-tree portfast S1(config-if)# spanning-tree bpduguard enable
Vérification
S1# show spanning-tree
VLAN
Edit
Pour chaque VLAN on peut configurer STP priorité.
S3(config)# spanning-tree vlan 1 priority 4096
Répartition de charge et redondance avec VLAN
Méthode 1 :
S1(config)# spanning-tree VLAN 1 root primary S2(config)# spanning-tree VLAN 1 root secondary
Méthode 2 :
S3(config)# spanning-tree VLAN 1 priority 24576
Variétés de protocoles STP
Edit
PVST+ (Cisco) ...
Edit
Rapide PVST (RSTP) ...
Edit
...
Configuration du protocole STP
Edit
Protocole de redondance au premier saut
Edit
...
Agrégation de liaisons et redondance au premier saut
Edit
EtherChannel
Edit
EtherChannel [Wikipédia] ― une technologie d'agrégation de liens utilisée principalement sur les commutateurs de Cisco ; elle permet d'assembler plusieurs liens physiques Ethernet en un lien logique. Le but est d'augmenter la vitesse et la tolérance aux pannes entre les commutateurs, les routeurs et les serveurs.
- EtherChannel utilise les ports de commutations existants (pas de frais supplémentaires).
- Le lien EtherChannel est considéré comme un lien logique unique.
- Configuration EtherChannel tire parti de l'équilibrage de la charge entre les liens physiques.
Autres caractéristiques
- Le protocole peut regrouper jusqu'à 16 ports Ethernet.
- Les commutateur Cisco IOS peuvent prendre en charge 6 EtherChannel's.
- Des liens EtherChannel peuvent être formés par négociation (PAgP ou LACP)
PAgP
Edit
PAgP (Port Agregation Protocol) [Wikipédia] ― ...
Modes PAgP
- Active ― en mode agrégation sans négociation
- Desirable ― demande activement de basculer vers agrégation
- Auto ― attend passivement l'invitation de basculer vers agregation.
LACP
Edit
LACP [Wikipédia] ―
Configuration EtherChannel
Edit

Pre-requisits
- Prise en charge d'EtherChannel sur tous les modules
- Vitesse et mode duplex
- VLAN doit être compatible (tous les interfaces sont sur le même VLAN)
- Plage VLAN permise sur le trunk
Mode On (sans protocole)
...
S1(config)# interface range FastEthernet 0/1-2 S1(config-if-range)# channel-group 1 mode on
Il faut répéter la même configuration sur les ports correspondants de l'autre commutateur, bien sûr.
Mode Desirable
Protocoles de redondance au premier saut
Edit
Protocole HSRP
Edit
Configuration de HSRP
Étape 1 : créer les SVI au niveau de chaque switch
S1(config)# interface vlan 10 S1(config-if)# ip address 10.0.10.2 255.255.255.0
Étape 2 : choisir une IP virtuelle et spécifier une priorité (défaut 100)
S1(config-if)# standby 1 ip 10.0.10.1 S1(config-if)# standby 1 priority 150
Étape 3 : Preempt oblige le switch niveau 3 de prendre en charge la priorité
S2(config-if)# standby 1 ip 10.0.10.1 S2(config-if)# standby 1 preempt
Protocole GLBP
Edit
Ajoute la fonction de load balancing.
R1(config)# interface f0/0 R1(config-if)# no shutdown R1(config-if)# interface f0/0.10 R1(config-subif)# encapsulation dot1Q 10 R1(config-subif)# ip address 10.0.10.2 255.255.255.0 R1(config-subif)# glbp 1 ip 10.0.10.1 R1(config-subif)# glbp 1 priority 150 R1(config-subif)# glbp 1 preempt R1(config-subif)# glbp 1 load-balancing round-robin
Note
Edit
Load balancing : protocole GLBR. Mais on peut faire aussi répartition de charge manuellement (HSRP + STP).
Réseaux sans fil
Edit
Avantages du sans fil
...
Types de réseaux sans fil
- Réseaux personnels sans fil (WPAN)
- Réseaux locaux sans fil (WLAN)
- Réseaux
- Réseaux WiMAX
- Haut débit cellulaire
- Haut débit satellite
Matériel sans fil
Edit
...
Fonctionnement sans fil
Edit
Authentification
Edit
...
Menaces WLAN
Edit
Les attaques DoS
Edit
...
Attaques DoS de trames de gestion
...
Points d'accès non autorisés
Edit
...
Attaques de l'intercepteur
Edit
...
Sécurisation de la technologie sans fil
...
Configuration du point d'accès
Edit
Protocoles de routage dynamique
Edit

Le fonctions des protocoles de routage dynamique :
- Découverte des réseaux distants
- Actualisation des informations de routage
- Choix du meilleur chemin
- Capacité à trouver un nouveau meilleur chemin si le chemin actuel n'est plus disponible.
Classification de protocoles de routage
Edit
Protocoles de routage IGP et EGP
Edit
Interior Gateway Protocols (IGP) [Wikipédia] ― ...
Exterior Gateway Protocols (EGP) [Wikipédia] ― ...

Protocoles à vecteur à distance
Edit
Distance identifie la distance par rapport au réseau de destination...
Vecteur indique la direction de l'interface...
Un routeur utilisant un protocole de routage à vecteur de distance ne connaît pas le chemin complet vers un réseau de destination, il connaît juste sa distance.
Protocoles à état de lien
Edit
Les protocoles IGP à état de lien sont :
- OSPF ― Protocole standard utilisé dans les LAN
- IS-IS ― Protocole utilisé sur les réseaux internes des fournisseurs (FAI)
Protocoles de routage par classe
- Protocoles de routage sans classe ― incluent les informations de masque de sous-réseau ndas les mises à jour de routage.
- Protocoles de routage par classe ― ne supportent pas les masques VLSM et créent des problèmes sur les réseaux discontinus.
Le fonctionnement des protocoles de routage dynamique
Edit
Métriques de protocoles de routage
Edit
- RIP : nombre de sauts
- OSPF :bande passante cumulée entre deux points
Algorithme
Edit
- Démarrage à froid
- Découverte de réseau (Network discovery)
- Échange des informations de routage
Le protocole de routage EIGRP
Edit
CCNA3, Chapitre 6
Caractéristiques de EIGRP
Edit
Les concepts EIGRP abordés :
- Récapitulation de route automatique ;
- Équilibrage de charge ;
- Routes par défaut ;
- Minuteurs de mise hors service ;
- Authentification.
Configuration de EIGRP pour IPv4
Edit
R1(config)# router eigrp <autonomous system> R1(config-router)# eigrp router <ipv4-address> R1(config-router)# network <address> <generic mask> R1(config-router)# passive-interface <interface> R1(config-router)# redistribute static|rip|ospf|connected
Récapitulation de route
Edit
La récapitulation de route permet de regrouper des réseaux et de les annoncer comme un seul grand groupe à l'aide d'une route récapitulée unique.
Avantages :
- réduire le nombre d'entrées dans les mises à jour de routage ;
- réduire la consommation de bande passante par les mises à jour de routage.
- réduire la taille des tables de routage locales.
Inconvénients :
Le protocole EIGRP pour IPv4 utilise une route Null0 pour empêcher les boucles. EIGRP intègre automatiquement une route récapitulative Null0 si :
- la récapitulation automatique est activée ;
- il existe au moins un sous-réseau qui a été acquis via EIGRP ;
- il existe plusieurs commandes network dans la configuration.
Configuration de récapitulation de route automatique
Edit
Switch#(config)# router eigrp <as-number> Switch#(config-router)# auto-summary
Configuration de récapitulation de route manuelle
Edit
R3(config) interface s0/0/0 R3(connfig-if)# ip summary-address eigrp 1 192.168.0.0 255.255.252.0
Vérification
Edit
Switch# show ip protocols Switch# show ip route eigrp Switch# show ip eigrp topology all-links
Propagation d'une route statique par défaut
Edit

La commande redistribute static du protocole EIGRP inclue les routes statiques dans les mises à jour EIGRP.
Bande passante pour EIGRP
Edit
Par défaut EIGRP n'utilise que 50 % max de la bande passante d'une interface. Pour changer :
Switch(config)# interface s0/0/1 Switch(config-if)# ip bandwidth-percent eigrp <as-number> <x%>
La commande pour IPv6 est la même, sauf ipv6 au lieu de ip.
Minuteurs Hello et mise en attente
Edit
- Intervalle Hello ― temps avant l'envoi d'un paquet « Hello » du protocole Hello léger.
- Le temps d'attente ― le temps maximal à attendre avant de déclarer que son voisin est inaccessible.
Switch(config)# interface s0/0/1 Switch(config-if)# ip hello-interfal eigrp <as-number> <seconds> Switch(config-if)# ip hold-time eigrp <as-number> <seconds>
Les commandes pour IPv6 sont les mêmes, sauf ipv6 au lieu de ip.
Équilibrage de la charge IPv4 à coût égale
Edit
Par défaut ― jusqu'à 4 routes dans la table de routage.
Switch(config-router)# maximum-paths <nombre de routes>
Remarque ! EIGRP utilise uniquement la bande passante la plus lente dans sa métrique composite.
Équilibrage de la charge IPv4 à coût inégale
Edit
La commande variance permet à EIGRP d'installer plusieurs routes sans boucle avec un coût inégal pour faire l'équilibrage :
- variance = 1 : seules les routes avec la même métrique sont permises pour l'équilibrage ;
- variance = 2 : toute route apprise par EIGRP avec une métrique inférieure à 2 fois la métrique du successeur sera utilisé pour l'équilibrage.
Pour repartager la distribution du traffic entre differentes routes avec le coût inégal ― la commande traffic-share balanced.
Exemple :
Switch(config-router)# variance 2 Switch(config-router)# traffic-share balanced
Vérification
Edit

show ip route show ip protocols show ip eigrp neighbors show ip eigrp topology show ip eigrp interfaces
Fonctionnement de EIGRP
Edit
3 tables
Edit
- table de routage
- table de voisinage
- table de topologie
La métrique EIGRP
Edit
- bande passante
- délai
m = 256*[107/min(bandwidth) + Sum(delais/10)]
ID de routeur EIGRP/OSPF
Edit
ID EIGRP = une adresse IPv4
Configuration de EIGRP pour IPv6
Edit
Il faut configurer l'ID du routeur.
L'adresse link-local est la même pour chaque interface d'un routeur.
R1(config)# ipv6 unicast-routing R1(config)# ipv6 router eigrp 2 R1(config-rtr)# no shutdown R1(config-rtr)# eigrp router-id 1.1.1.1 ... R1(config)# interface g0/0 R1(config-if)# ipv6 eigrp 2 ...
Vérification
R1# show ipv6 protocols
Sécurité EIGRP
Edit
Authentification avec MD5
Étape 1 : créer une chaîne de clés
Router(config)# key chain <name-of-chain> Router(config-keychain)# key <key-id> Router(config-keychain-key)# key-string <key-password>
Étape 2 : configurer authentification à l'aide de la chaîne de clés
Router(config)# interface s0/0/0 Router(config-if)# ip authentication mode eigrp 100 md5 Router(config-if)# ip authentication ...
OSPF à zone unique
Edit
Le protocole OSPF (Open Shortest Path First) [Wikipédia] ― un protocole de routage interne IP de type « à état de liens » (OSPFv2 RFC 2328, OSPFv3 RFC 2740).
Caractéristiques OSPF
Edit
- Sans classe : OSPFv2 est sans classe par conception.
- Efficace : mises à jour seulement pour des changements de routage ; algorithme SPF pour le meilleur chemin.
- Convergence rapide : diffuse rapidement les modifications (la distance administrative OSPF = 110).
- Évolutif : fonctionne bien sur les petits et grands réseaux.
- Sécurisé :
- OSPFv2 utilise MD5 / SHA
- OSPFv3 utilise IPSec
Composants du protocole OSPF
- 3 tables de données (par le système d'adressage)
- table de voisinage (show ip ospf neighbor)
- table topologique (show ip ospf database)
- table de routage (show ip route)
Fonctionnement OSPF
- Établir les contiguïtés de voisinage (paquets « Hello »)
- Échanger des informations sur l'état et le coût de chaque lien (paquets LSA)
- Établir la table topologique
- L'algorithme SPF
Zone unique vs zones multiples
- OSPF à zone unique : tous les routeurs sont situés dans une zone fédératrice (area 0)
- OSPF multizone : plusieurs zones, de façon hiérarchique ; toutes les zones doivent se connecter à la zone fédératrice ; les routeur reliant les zones entre elles sont des routeurs ABR (Area Border Router).
OSPF à zones multiples
Edit
CCNA 3 (version 6), chapitre 9

Protocoles de routage à état de lien
Edit
Fonctions :
- réaction rapide aux changements dans la topologie du réseau ;
- mises à jour suit à un changement de la topologie ;
- mises à jour périodiques (rafraîchissements d'état de liens) ;
- mécanisme HELLO pour déterminer l'accessibilité de voisins ;
- informations HELLO et mises à jour de routage reçus des autres routeurs ― base de données sur le réseau ;
- algorithme du plus court chemin d'abord (SPF) pour calculer les routes.
Le routage à l'état de liens utilise :
- des mises à jour de routage à état de liens (LSA) ;
- une base de données topologiques ;
- l'algorithme de plus court chemin d'abord (SPF) ;
- l'arbre SPF résultant ;
- une table de routage contient les meilleurs chemins.
Types de paquets utilisés :
- Hello
- chaque routeur surveille l'état de ses voisins directement connectés ;
- le paquet Hello contient des informations sur les réseaux reliés au routeur.
- LSA
- chaque routeur surveille aussi tous les routeurs de son réseau ou de sa zone au moyen de mises à jour de routage à état de liens (LSA) ;
- les paquets LSA fournissent des mises à jour sur l'état des liens (interfaces) sur tous les routeurs du réseau.
Terminologie :
- Liaison (Link) : interface sur un routeur
- État de lien (Link state) : état d'une liaison entre deux routeur (à préciser !)
- Zone (Area) : ensemble des réseaux et des routeurs ayant la même identification de zone et la même base de données de liens.
- Coût (Cost) : valeur affectée à une liaison (à préciser !)
- Table de topologie (Topological database) : liste d'informations relatives aux autres routeurs de l’inter-réseau
- Table de routage (Routing table) : obtenue à partir de la table topologique en exécutant l'algorithme SPF ; la table de routage de chaque routeur du même réseau est unique
- Base de voisinage (Adjacency database) : chaque routeur conserve une liste de voisins (à préciser !)
Pourquoi utiliser OSPF à zones multiples
Edit
Le protocole OSPF à zone unique est utile sur les réseaux de petite taille où la structure des liaisons du routeur n'est pas complexe et où les chemins d'accès aux différentes destinations peuvent être déterminés facilement.
Le protocole OSPF gére 3 tables :
- table de voisinages ;
- table de topologie ;
- table de routage (obtenue depuis la table de topologie à l'aide d'algorithme SPF.
Inconvénients du protocole OSPF à zone unique
Edit
-
- taille excessive de la base de données d'états de liens (LSDB)
- fréquence élevée des calculs de l'algorithme SPF

Le protocole OSPF à zones multiples est utilisé pour diviser en plusieurs zones un réseau OSPF de grande taille. Ça nécessite une conception de réseau hiérarchique : la zone principale est appelée zone fédératrice (zone 0), toutes les autres zones doivent y être reliées.
Zone fédératrice (transit), ou zone 0
- la zone dont la principale fonction est de faire circuler de manière rapide et efficace les paquets IP ;
- connectée à d'autres types de zone OSPF.
Zone normale (non-fédératrice)
- met en relation les utilisateurs et les ressources ;
- une zone normale n'autorise pas le trafic issu d'une autre zone à utiliser ses liens pour parvenir à d'autres zones (il faut plutôt passer par la zone 0).
Fonctionnement du protocole OSPF à zones multiples
Edit
Types de routeur OSPF
Edit
- Routeur interne : un routeur dont toutes les interfaces se situent dans la même zone ; les lsdb de tous les routeurs internes à une zone sont identiques.
-
-
-
Types de LSA
Edit
Type de LSA | Description |
---|---|
1 | LSA de routeur |
2 | LSA de réseau |
3 et 4 | LSA de récapitulation |
5 | LSA externe du système autonome |
6 | LSA OSPF de multidiffusion |
7 | Défini pour les NSSA |
8 | LSA d'attributs externes pour le protocole BGP |
9, 10 et 11 | LSA opaques |

LSA OSPF type 1 : LSA de routeur
Edit
- contiennent une liste des types de lien et des préfixes de réseau connectés directement ;
- tous les routeurs émettent des LSA type 1 ;
- sont diffusées au sein de la zone et ne se propagent pas au-delà du routeur ABR ;
- l'ID d'état de lien d'une LSA type 1 est identifié par l'ID de routeur d'origine.

LSA OSPF type 2 : LSA du réseau
Edit
- identifient les routeurs et les adresses réseau des liens à accès multiple ;
- seul un DR émet des LSA type 2 ;
- sont diffusées au sein du réseau à accès multiple et ne se propagent pas au-delà du routeur ABR ;
- l'ID d'état de lien d'une LSA type 2 est identifié par l'ID de routeur désigné (DR)

LSA OSPF type 3 : LSA de récapitulation
Edit
- décrit l'adresse réseau apprise par les LSA de type 1 ;
- est requise pour chaque sous-réseau ;
- les routeurs ABR diffusent les LSA type 3 dans d'autres zones, où elles sont régénérées par d'autres ABR ;
- l'ID d'état de lien d'une LSA type 3 est identifié par l'adresse réseau ;
- par défaut, les routes ne sont pas récapitulées.
Réglage et dépannage du protocole OSPF
Edit
OSPF sur les réseaux à accès multiple
Edit

Les types de réseau OSPF
...
Challenges du protocole OSPF
...
Le routeur désigné (DR) du protocole OSPF

...
Vérifier les rôles de routeur désigné (DR) et du routeur désigné de secours (BDR)
OSPFv2 :
show ip ospf interface
OSPFv3 (IPv6) :
show ipv6 ospf interface
Vérifier les contiguïtés du routeur désigné (DR) et du routeur désigné de secours (BDR)
OSPFv2 :
show ip ospf neighbor
Le processus de sélection du DR/BDR par défaut
...
La valeur de la priorité
Au niveau de l'interface connectée à un commutateur :
ip ospf priority <value>
Si <valeur> = 0, le routeur ne peut pas être ni DR, ni BDR !
Propagation d'une route par défaut
Edit
Propager une route statique par défaut dans OSPFv2
ip route 0.0.0.0 0.0.0.0 <ipaddress | exit-interface> default-information originate
Vérifier la route IPv4 par défaut propagé
show ip route
Bien sûr, ça se fait sur les autres routeurs voisins.
Ajustement des interfaces OSPF
Edit
Les intervalles Hello et Dead OSPF
- Configurables par interface
- Si les intervalles OSPF ne correspondent pas sur les interfaces de routeurs voisins, la contiguïté de voisinage ne peut pas s'établir.
Modifier les intervalles OsPFv2 (très déconseillé...)
...